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THE MECHANISM OF CORONA DISCHARGE FROM A WATER DROPLET 

A. I. Grigor'ev and S. O. Shiryaeva UDC 537.523:551.594:621. 
315:621.359.7 

A model is proposed for electrical discharge from a water droplet, which explains 
the experimentally observed formation of a sharp projection at the top of the drop- 
let and emission therefrom of highly dispersed charged droplets and ions. 

i. The first studies of electrical discharge from a water droplet were performed at 
the start of this century [i]. After the appearance of [2] such a discharge was termed 
"corona," although from the data obtained in [2] it follows that such a term is incorrect 
(which was noted in [3]). This incorrect terminology has led to the treatment of the still 
incompletely studied mechanism of discharge from a water drop from the viewpoint of con- 
ventional corona discharge from a metallic point [4]. Meanwhile the study of the real mechan- 
ism of discharge from a drop of electrically conductive liquid is of significant interest be- 
cause of its applications in various physical and technical problems: from power generation 
[4] and study of the mechanisms of explosive emission and electrode erosion in high power 
arcs [5] to the theory of natural storm electricity [6]. The present study was undertaken 
to meet this need. 

It is well known that in a sufficiently intense electric field a water drop first ex- 
tends into an ellipsoid of revolution oriented along the field [7], after which sharp pro- 
jections appear at the ends, from which highly dispersed droplets which flow weakly in dark- 
hess are emitted [1-4, 6, 8]. The dimensions of these droplets decrease with increase in 
field, and finally at a sufficiently high field, droplet emission is replaced by emission 
of ions [i, 6, 8]. The visual characteristics of a discharge from a water drop very much 
recall a corona discharge from a metal point. This is evident from Figs. 1 and 2. The ex- 
ternal similarity of the two processes is obvious. But careful examination of experimental 
data on the discharge from a water drop [1-4, 6, 8] shows that it cannot be identified with 
the discharge from the metal point: their mechanisms differ. But before discussing the 
mechanism of the drop discharge we should first consider the question of why the sharp pro- 
jections from which the discharge commences appear upon the drop. 

The classical studies of Tonks [9] and Taylor [10] on this question did not in fact 
provide an answer. Tonks showed that formation of such projections is possible, or to speak 
more precisely, does not contradict known physical laws. Taylor simply postulated exis- 
tence of equilibrium projections of strictly conical form with aperture angle of the cone 
constant for a given liquid, and commencing from this postulate, sought the external field 
at which existence of that form was possible. And apparently, he was incorrect. Careful 
examination of available photographs of such projections, including those cited by Taylor 
[8, 10-13], shows that their form is not precisely conical, but is more like a half of a 
pseudosphere [14]: aside from the close vicinity of the top itself, the Gaussian curvature 
of the projection is negative everywhere. This is especially evident in the photograph 
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Fig. I. Photograph of electrical discharge from a water drop 2.5 mm in diam- 
eter upon application of positive potential of zl0 kV. 

Fig. 2. Photograph of corona discharge from metallic point upon application 
of positive potential of zl0 ku 

presented in [13] (p. 247). From this photograph, which recorded several simultaneously exist- 
ing projections, it follows that if we can even speak of their aperture angle, that quantity 
is not constant for a given liquid. But in that case all the constructions based on Taylor's 
postulate are erroneous. This conclusion explains the unsuccessfull attempts to reconcile 
Taylor's theoretical views with experimental data in which the effect of projections on a 
liquid surface is significant: in liquid metal ion sources [Ii] and in electrodynamic atomi- 
zation of liquids [15]. On the basis of this fact, [Ii] raised doubt as to the equilibrium 
nature of the projections. And in our opinion, this doubt is fully justified, since Zeleny 
[16] also thought that the electric current flowing through the drop played an important role 
in formation of the projections. As will be shown below, consideration of this effect will 
explain the appearance of the projections, and thus opens a path for detailed study of the 
mechanism of discharge from a water drop. 

2. Let a drop of nonideally conductive liquid be located in air within a constant homo- 
geneous electric field s If the field intensity is not too great and instability of the 
drop surface exists, then, as is well known [7], the equilibrium form of the drop will be 
an ellipsoid of revolution extended along the field. According to Reilly's theory [17] in- 
stability of the liquid surface implies exponential growth of certain modes of capillary 
waves which exist in the droplet in view of the thermal motion of liquid molecules [18]. This 
occurs at a value of external field E, related to the surface tension coefficient o and the 
radius of the original spherical drop R 0 by the phenomenological expression [i0] 

~go C ~ ~0 

It is natural to expect that upon development of instability the first capillary wave modes 
to increase will be those symmetric about the direction of the field, This then causes an 
exponentially increasing axisymmetric projection to appear at the end of the drop turned 
toward the field. But within the framework of linear theory exponential amplitude growth is 
guaranteed only until the mode amplitude becomes of the order of the wavelength. Linear 
theory is unable to predict the further fate of the unstable mode, but numerical calculations 
[15] show that at some finite amplitude mode growth terminates, in the final outcome the 
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projection at the end of the ellipsoidal drop stabilizes after reaching some finite value. 

3. The appearance of a projection at the end of the drop leads to redistribution over 
the drop section of the electric current which flows within it because of the field E0, 
which will be homogeneous in an ellipsoidal drop [19]. In pure (deionized) water the 
current is caused by proton transitions over hydrogen bonds [20], i.e., it is a flow of 
charged particles all of the same sign, which exerts an effect upon the medium, in which 
a certain pressure propagates, and thus, upon the drop-external medium boundary (i.e., 
we have an analog of dynamic pressure). But, as can easily be seen, this pressure has the 
same dependence upon coordinate as does the pressure of the external field [19]: 

1 92 
~o E2 ~oE~ b 2 

P E  - -  - -  
2 2 1 +  eZ P2 ' 

1 - - e  2 b2 

(2) 

where • is a coefficient depending on the eccentricity, electrical conductivity, and dielec- 
tric permittivity of the drop and external medium. In fact, the pressure of the constant 
current on the ellipsoid surface ~cos 2 8, where 0 is the angle between the direction of the 
H + ion motion creating the current to the normal at the given point of the ellipsoid surface. 
Taking into consideration that tan~ =-z(p), where z is the tangent to the meridional sec- 

tion of the ellipsoid z = z ( p ) :  z=a]/ I - -9~/b  2, one can easily write an expression for the pressure 
produced by the current: 

l p2 

b 2 
P ~ = P +  e2 ,0 2 , ( 3 )  
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i.e., we obtain the same function of coordinates as for the field pressure, Eq. (2). And 
this means that consideration of Eq. (3) cannot lead to a qualitative change in drop form. 
And since P+<<~o• then PT far from the state of instability can in general be neglected. 
The picture changes when a projection appears at the top of the drop, even if it be small. 
For simplicity we will approximate the form of the projection by one half of an oblate el- 
lipsoid of revolution. As is well known [19], field intensity in the vicinity of the peak 
of an ellipsoid both outward and inward is higher than the homogeneous field E 0 far from the 
ellipsoid by a factor of a times, where a is determined by the eccentricity (for a sphere, 
for example, a = 3). The same is true of an ellipsoidal projection atop an ellipsoidal drop: 
appearance of the projection produces a local increase in field as compared to that existing 
originally. In the final reckoning the current flowing through the drop to its top beneath 
the projection increases, while far from the projection (within the drop) it remains as be- 
fore (the projection is assumed small, and its development causes only local changes). This 
means that the ion flow rate beneath the projection increases somewhat. Since the field 
beneath a projection in the form of an ellipsoid of revolution is homogeneous [19], just 
as in the main volume of the ellipsoidal drop, with consideration of the effect of the pro- 
jection the flow in the drop can be modeled by a "jet with satellite flow" in hydrodynamic 
representation. In this case the distribution of ion velocity over distance to the axis of 
symmetry of the drop will have the form (see, for example, [21]): 

( 021 -~ (4) V - - V o =  C 1 @ ~2/ " 

This means that at the top of the drop near the axis of symmetry an ion current pressure in 
addition to that of Eq. (3) will act: 

t Z I T z C  2 

m n  ( V  - -  Yo) ~ = 2 _ B P ,  -y- 
( 1 + V ) + 

o__2 2 - (5) 

We will seek the form of the drop under these conditions using the technique employed for 
analysis of conditions of development of toroidal figures of equilibrium liquid masses sub- 
jected to the action of capillary forces [22]. 

4. In view of the axial symmetry of the problem developed it will be sufficient to limit 
ourselves to the first quadrant of the meridional section of the drop, then p -= x. 
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P1q-Po = PE-I-Poq-P~4-P,, 

where in the first quadrant [14, 22]: 

x 

On the free surface of the drop the condition of equilibrium of all forces has the form 

(6) 

(2), (3) and (5), (7) in Eq. Substituting Eqs. 
ables: 

a xz (7) 
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(6) and t r a n s f o r m i n g  to  d i m e n s i o n l e s s  v a r i -  
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we arrive at 

1 d .~j 2co-]-2h 1 + ~ 2  26 - - -  + (9 )  
a~ V I + h 2 I + ~ (I + ~q~)~ 

Integrating Eq. (9) one time, we obtain 

h [ T q - l l n ( l q - 7 ~ )  ] 6 1 c~ 
3 / I + h  ~ - C o ~ + - - [ j - ~  + + - - ,  ( l o )  

where c I is an integration constant. For any value of q the expression on the left side of 
Eq. (i0) will be finite; while as ~ § 0 the expression on the right increases because of the 
last two terms. Requiring that the sum of these remain finite as $ + 0, we obtain c I = -6/q 2. 
Finally we obtain 

=Co~@ h I y-+-i ln(t-1-7~2) ~] 6~ (11) 

o r  

= V1 _ , z  (12) 

The solution of this equation then determines the form of the meridional section of the drop 
in the first quadrant. In view of the cumbersomeness of the expression obtained Eq. (12) 
must be integrated numerically. But the information of interest to us can be obtained di- 
rectly from Eqs. (ii), (12) without doing that. 

5. We consider that if we drop the last term in Eq. (ii) and substitute the abbreviated 
function @ thus obtained in Eq. (12), that equation determines the equilibrium drop form in 
the field, which according to the above, is ellipsoidal. The basic result of [15] can be 
reduced to the statement that under the action of only capillary forces and pressure forces 
of an external electrostatic field it is impossible to obtain a sharp projection atop the 
drop. This means that if consideration of current pressure can explain the appearance 
of the projection, then in Eq. (Ii) this projection is defined by the last term. And if we 
drop the first two terms in Eq. (ii) and retain only the last, i.e., take 

8~ 
~(~) -- - - ,  (13) 

l + q i ~  ~ 

t hen  t he  s o l u t i o n  of  Eq. (12) g i v e s  t he  form of t h e  p r o j e c t i o n  which i s  imposed on t he  
e q u i l i b r i u m  e l l i p s o i d  d e f i n e d  by t h e  te rms  dropped .  In  t h i s  case  Eq. (12) t a k e s  on t h e  form 

6~ 

and i s  e a s i l y  i n t e g r a t e d  
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Figure 3 shows D($) for various values of q and 6. 
amplitude of this projection has a value 
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It is evident from Eq. (14) that the 

q2 
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(14) 

( 1 5 )  

with characteristic width 

s~q-'.  (16) 
6. For small ~, where ~ ~ l/q, i.e., in the vicinity of the tip of the projection, in 

place of Eq. (13) we have approximately: ~($) = -6~. The solution of Eq. (12) in this case 
is quite simple: n 2 + ~2 = 6-2 i.e., near the tip the projection is practically spherical 
and the field within the projection beneath the tip is constant and homogeneous [19]. Thus, 
we return to the original problem. In fact, if the drop instability condition in the ex- 
ternal field, Eq. (i), is satisfied in the original drop, then it will be satisfied even more 
so for the projection atop the drop with its smaller radius of curvature. Let the drop po- 
tential ~ remain constant. Then the field intensity at a given point of the surface is de- 
fined by the expression f=~/~, where R is the mean radius of curvature at the given point 
[14]. Condition (i) for the tip of the projection then takes on the form 

-- ~ const, 
R z ~ R~ 

It is evident that with decrease in the radius of curvature the left side of this inequality 
increases. This means that it is satisfied even more for the tip of the projection if it was 
satisfied for the original drop. Then because of capillary wave instability [9] there appears 
again on the projection a smaller projection, under which the conduction current pressure, 
external field, and capillary forces will act. In the final outcome the projection takes on 
the form of Eq. (14) with different coefficient values. The process is then repeated anew, 
i.e., the projection grows. Meanwhile the height of each subsequent step must exceed the 
previous one, since the field intensity beneath the projection increases with increase in its 
mean curvature, so that the current density and its pressure on the projection increases and 
according to Eq. (15) the height of the corresponding step must increase. According to Eq. 
(16) the width must decrease. Finally the form tends to one half of a pseudosphere [14], 
as follows from the experimental photographs noted above, but is especially evident in the 
photographs of [ii, 13] or the photograph of the water drop in an external field (see Fig. 4) 
obtained by the present authors in experiments similar to those of Zeleny [4, 16]. 

7. As was noted above, it has been observed experimentally that with increase in the 
external field the tip of the projection on the liquid surface first begins to emit charged 
liquid droplets [4, 6, 8], the size of which decreases with increase in field, followed by 
ion emission [5, 6, 8]. Visually the entire process appears like a corona discharge from the 
water drop [5]. However it is obvious that the physical mechanisms of this discharge may dif- 
fer greatly from those involved in a corona discharge from a metallic point. We will con- 
sider this question in greater detail. 

It is clear a priori that equilibrium emission of charged droplets by the projection 
will be found if only the characteristic time for electrical relaxation in the field E of 
the large drop with dielectric permittivity e, charge carrier mobility u, and linear size s 
T = es is less than the time for droplet breakoff from the tip of the projection, which 
will be of the order of the period of oscillation of the fundamental mode of the detached 
droplet of density d and radius r [17]: t = 2nJd-~r~/8o, which leads to a limitation on the 
minimum size of the droplets emitted: 

2o i el Is3 
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Fig. 3. Calculated forms of emitter projection: i) q2 = i0; 5/q = 
i; 2) i00 and I; 3) i0 and 0.i; 4) i000 and i. 

Fig. 4. Photograph of emitting projection atop drop appearing upon 
ignition of electrical discharge. 

For E = 1.5.10 s u u = 350 cm2/~, s = i mm, s = 80, o = 7.10 -4 N/cm, condition (17) 
takes on the form r, > 7.10 -S cm. The mechanism of droplet detachment from the projection 
tip is apparently the same as in the case of detachment of a water drop from the end of a 
capillary tube under the force of gravity, i.e., the external field E acting on the charge 
of the projection tip Q tends to remove the drop while the capillary force 2~ro retains it. 
When the electrical force exceeds the capillary, droplet detachment occurs. However this may 
all be illustrated by a simplified model of the phenomenon. 

According to generally accepted physical concepts of charge distribution on the surface 
of a conductor of arbitrary form, the maximum charge density will be on convex portions of the 
conductor with maximum mean and positive Gaussian surface curvature, with minimum charge in 
depressions where the Gaussian curvature of the surface is negative. In the model under 
consideration the Gaussian curvature of all points of the projection with the exception of its 
tip, which may be approximated by a hemisphere, is negative. In connection with this we 
assume that on the projection charge exists only on the hemispherical tip, where in the 
equilibrium state it is distributed over the surface with a density Z = 3Ecos0/4~ [19] (p. 
30). Then the total charge of the projection will equal: Q = 0.75.E.r 2. Requiring that the 
force detaching the droplet from the projection QE exceed the capillary force restraining the 
droplet 2vro, we obtain another limitation on the minimum size of the droplets detached 

8~ r , > - -  (18) 
3E 2 

In this condition the strong dependence of r, on E is interesting, allowing explanation of 
the experimental fact of reduction in size of the droplets emitted with increase in the ap- 
plied field. For the parameter values chosen Eq. (18) yields: r, > 2"I0 -a cm, while for in- 
crease in E by an order of magnitude the limitations on r, given by Eqs. (17), (18) coincide. 

Disruption of Eq. (17) implies that electrical charge does not reach the projection due 
to the finite value of the electrical conductivity and the total charge of the projection 
tip is less than the equilibrium value, which raises doubt as to the satisfiability of condi- 
tion (18). 

8. But even before the finite velocity of charge transfer in the nonideally conducting 
droplet limits emission of charged droplets from the projection, another mechanism for the 
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removal of charge from the tip sets in: auto-ion emission [8, ii]. As soon as the local 
electric field intensity at the tip of the projection reaches a value of ~108 V/cm, field 
evaporation of H + ions begins. And a field of ~i0 ~ V/cm for the potentials characteristic 
of Zeleny's [4] and Inglish's [5] experiments of ~i0 ~ u is achieved at the tip of the pro- 
jection even at a radius of curve of ~10 -4 cm. 

The fact of charge removal from the drop by ions has been noted more than once in experi- 
ments (see, for example, [8]). Apparently such ion emission from the tip of the projection 
is the cause of the fan-shaped scintillation observed by Zeleny [4], the special form of 
corona discharge from a water drop. In fact, the free path length for an ion before colli- 
sion with a neutral molecule in air at atmospheric pressure is ~10 -5 cm [23], and the energy 
acquired over the free path length by an H + ion in a field of ~108 V/cm, which develops at 
the tip of the projection, will be ~I0 a eV. A proton with such energy will ionize air and 
excite a molecule at a distance of ~10 -4 cm in the vicinity of the tip [13], which for a main 
drop with diameter of ~i mm and currents of ~i ~A [16] will produce ~I015 excited molecules 
per second [8]. Over a time of i0 -v sec about 108 excited molecules will appear, the radia- 
tion of which, according to the estimates presented in [23] (p. 141), will generate ~i0 photo- 
electrons at a distance of ~i cm from the tip. In the inhomogeneous electric field ~i04 V/cm 
between the drop and the plane electrode these electrons will form an avalanche directed to- 
ward the drop, i.e., a corona discharge supported by photoionization will exist. 

9. In conclusion it should be noted that the proposed model of an electrical discharge 
from a conductive liquid drop can be used to study the physical mechanisms of operation of 
ion colloid reactive engines [24], where emission of charged droplets by a conductive liquid 
is significant, in the theory of storm electricity involving St. Elmo's fire [25], the model 
of which has been based on the "fan" scintillation from a water drop observed by Zeleny [i], 
as well as in designing liquid metal ion sources [ii] and electrodynamic liquid atomizers 
[15]. 

NOTATION 

x, z, dimensional Cartesian coordinates; b, a, minor and major semiaxis of ellipsoid of 
rotation oriented along axis OZ; e, ellipsoid eccentricity; $ = x/b and q = z/b, dimensionless 
coordinates; R0, spherical drop radius; R, mean radius of surface curvature; r, radius of 
small emitted droplet; r,, minimum radius of emitted droplet; p, distance from axis of symme- 
try of ellipsoid; ~, slope of tangent to meridional section of surface; 8, orientation angle 
of external normal to drop surface relative to external homogeneous electric field ~ ; E,, 
critical value of external field at which drop becomes unstable; E, electric field intensity 
at drop surface; ~, field intensification coefficient beneath curved surface compared to 
field beneath plane surface; o, surface tension coefficient of water; ~0, dielectric con- 
stant; ~, dielectric permittivity of water; n, ion concentration; m, ion mass; V, velocity 
of ion motion in water produced by electric current; V0, unperturbed velocity of ion motion 
under action of homogeneous electric field in ellipsoidal drop; 6, characteristic transverse 
dimension of projection atop drop; d, density of water; Q, charge at tip of projection on 
drop; Z, electrical charge surface density on drop; ~, characteristic time for drop electrical 
relaxation; 9, electrical potential of drop; Pl, atmospheric pressure; Po, Laplace pressure 
beneath curved drop surface; PE, electrostatic pressure of external field on drop surface; 
PT, pressure of current on drop surface, when ellipsoidal form is not distorted by any distur- 
bance; P+, proportionality coefficient in expression for current pressure; P,, current pres- 
sure disturbance due to appearance of projection atop ellipsoid of revolution; B, proportional- 
ity coefficient with dimensions of pressure; C, proportionality coefficient with dimensions 
of velocity; ~, dimensionless proportionality coefficient; cl, integration constant; P0, 
internal pressure in drop; u, ion mobility; E, characteristic linear dimension of drop; ~(~), 
function of dimensionless coordinate $; q=~/~; y~e2/(l--e2); 8=bB/2~; co=(Po--P1)b/2~; I~ ~0E~• 
P+/o, dimensionless parameters; L, $, amplitude and width of projection formed on top of 
equilibrium spheroid. 
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EFFECT OF ELECTRODE CONFIGURATION ON EFFICIENCY OF INDUCTION 

ELECTRIFICATION OF DROPLETS 

V. I. Bezrukov, V. D. Spiridonov, 
and Yu. V. Syshchikov 

UDC 537.29:532.522 

Numerical calculation of the electric field in an induction electrification unit is 
used to determine the charges of droplets formed for various axisymmetric electrode 
systems. 

In electrodroplet-jet equipment the charge of the droplets is the basic parameter con- 
trolling transverse deviations of drops in the chain and, thus, formation of the image on the 
substrate [i]. Therefore calculation of this parameter is an important stage in the design 
of such devices. Theoretical calculations are based on determination of the electric field 
in the interelectrode gap. Analytical calculations usually make use of a number of assump- 
tions for which quantitative estimates are lacking, as a result of which they are uncontrolled, 
and in a number of cases, incorrect. Among these assumptions are: that the droplet charge 
is determined by a section of the jet the length of which is equal to the wavelength of the 
disturbance; neglect of electrode edge effects; neglect of charge redistribution on the elec- 
trode surfaces due to interaction with jet charges and detached droplets; use of the thin 
bar approximation for the jet, which produces the largest error near its end (i.e., the spot 
of droplet formation), etc. 

The present study has as its goal the calculation of the electric field in the inter- 
electrode space of an axisymmetric charging system in an electrodroplet-jet device with 
its subsequent use to calculate the chargesupon the droplets formed. Special attention was 
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